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Abstract
Mutually unbiased bases generalize the X, Y and Z qubit bases. They possess
numerous applications in quantum information science. It is well known
that in prime power dimensions N = pm (with p prime and m a positive
integer), there exists a maximal set of N + 1 mutually unbiased bases. In
the present paper, we derive an explicit expression for those bases, in terms
of the (operations of the) associated finite field (Galois division ring) of
N elements. This expression is shown to be equivalent to the expressions
previously obtained by Ivanovic (1981 J. Phys. A: Math. Gen. 14 3241) in odd
prime dimensions, and Wootters and Fields (1989 Ann. Phys. 191 363) in odd
prime power dimensions. In even prime power dimensions, we derive a new
explicit expression for the mutually unbiased bases. The new ingredients of
our approach are, basically, the following: we provide a simple expression
of the generalized Pauli group in terms of the additive characters of the field,
and we derive an exact groupal composition law between the elements of the
commuting subsets of the generalized Pauli group, renormalized by a well-
chosen phase-factor.

PACS numbers: 03.65.−w, 03.67.−a, 89.70.+c

Introduction

A collection of orthonormal bases of a N-dimensional Hilbert space is said to be mutually
unbiased if whenever we choose two states from different bases, the modulus squared of their
in-product is equal to 1/N . It is well known that, when the dimension of the Hilbert space
is a prime power, there exists a set of N + 1 mutually unbiased bases. This set is maximal
because it is not possible to find more than N + 1 mutually unbiased bases in a N-dimensional
Hilbert space [1–3]. It is also a complete set because when we know all the probabilities of
transition of an unknown quantum state towards the states of the bases of this set, we can
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reconstruct all the coefficients of the density matrix that characterizes this state. In other
words, we can perform full tomography or complete quantum state determination [1, 2, 4, 5].
A crucial element of the construction is the existence of a finite commutative division ring
(or field1) of N elements. As is well known, finite fields with N elements exist if and only if
the dimension N is a power of a prime, and a derivation of a set of mutually unbiased bases
is already known in such cases. It is worth noting that nobody has managed until now to
generalize this construction in the absence of a finite field so that it is still an open question
whether such sets exist when the dimension is not a prime power [6, 7]. In the present paper,
we obtain, in a synthetic formulation, the expressions for the mutually unbiased bases that
were derived in the past. In odd prime power dimensions, we recover by a slightly different
approach the expressions already obtained in the past by Ivanovic [1]. In odd prime power
dimension, we derive an expression that we show to be equivalent, up to a relabelling, to that
derived by Wootters and Fields [2]. We provide a synthetic expression that is also valid in even
prime power dimensions (2m). The (discrete) Heisenberg–Weyl group [3, 4, 8] (sometimes
also called the generalized Pauli group), a finite group of unitary transformations, plays a
central role in our approach.

1. Preliminary concepts

In what follows, we shall systematically assume that we work in a Hilbert space of prime power
dimension N = pm with p a prime number and m a positive integer. Then, as is well known,
it is possible to find a finite field with N elements. We shall label these elements by an integer
number i, 0 � i � N − 1), or, equivalently, by a m-uple of integer numbers (i0, i1, . . . , im−1)

running from 0 to p − 1 that we get from the p-ary expansion of i: i = ∑m−1
n=0 inp

n. This
field is characterized by two operations, a multiplication and an addition, that we shall denote
by �G and ⊕G respectively. It is always possible to label the elements of the field in such a
way that the addition is equivalent to the addition modulo p componentwise. As all the fields
are equivalent, up to a relabelling, there is no strict obligation to do so, but it is more natural
and convenient. The fact that the addition factorizes in this way is a direct consequence of the
fact that for all the finite fields the characteristics of the field, which is the smallest number
of times that we must add the element 1 (neutral for the multiplication) with itself before we
obtain 0 (neutral for the addition), is always equal to a prime number (p when N = pm). The
index G refers to Evariste Galois and is introduced in order not to confuse these operations
with the usual (complex) multiplication and addition for which no index is written.

Let us denote γG the pth root of unity: γGei2π/p. Exponentiating γG with elements g of
the field (with the usual rules for exponentiation), we obtain complex phasors of the type γ

g

G

(0 � g � N). Such phasors can take p different values. They can be considered as a p-uple
generalization of the (binary) parity operation ei(2π/2)g that corresponds to the m-qubits case.
Indeed, the phasor γ

g

G (0 � g � N) only depends on the value of the first component g0 of the
p-ary expansion of g which is nothing else than the remainder of g after division by p, when
the division by p is taken in the usual sense.

In virtue of the fact that the addition is the addition modulo p, componentwise, we get

γ i
G · γ

j

G = γ
(i⊕Gj)

G . (1)

Indeed, γ i
G · γ

j

G = γ
(i+j)

G = γ
(i0+j0)

G = γ
(i⊕Gj)0
G = γ

(i⊕Gj)

G (in the previous expression, we
represented by the symbol x0 the remainder of x after division by p, with x an element of the

1 A field is a set with a multiplication and an addition operation which satisfy the usual rules, associativity and
commutativity of both operations, the distributive law, existence of an additive identity 0 and a multiplicative identity
1, additive inverses, and multiplicative inverses for every element, 0 excepted.
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Table 1. The field multiplication in dimension 4.

�G 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 3 1
3 0 3 1 2

Table 2. The field addition in dimension 4.

⊕G 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

Table 3. The multiplication modulo 4.

· mod 4 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

Table 4. The addition modulo 4.

+mod 4 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

field comprised between 0 and pm − 1 = N − 1). This relation is well-known and expresses,
in the language of mathematicians, that pth roots of unity are additive characters of the Galois
field [34].

The following identity also appears to play a fundamental role in our approach:

N−1∑
j=0

γ
(j�Gi)

G = Nδi,0. (2)

Indeed, if i = 0, then
∑N−1

j=0 γ
(j�Gi)

G = N · 1 = N . Otherwise,
∑N−1

j=0 γ
(j�Gi)

G = ∑N−1
j ′=0 γ

j ′
G

in virtue of the inversibility of the multiplication. Now the exponentiation of gamma
by elements of the field does only depend on the remainder after division by p, so that∑N−1

j ′=0 γ
j ′
G = pm−1 ∑p−1

j ′=0 γ
j ′
G = pm−1 (1−γ

p

G)

(1−γG)
= 0.

It is important to note, in order to avoid confusion, that different types of operations are
present at this level. The internal field operations are labelled by the lower index G. They must
not be confused with the modulo N operations. In order to emphasize the difference between
these operations, we give the corresponding tables in the case of N = 4 = 22. One can check
that the field and modulo 4 multiplications are distributive relative to their respective additions,
but that there are no dividers of 0, 0 excepted, only in the case of the field multiplication.
As a consequence, the field multiplication table, amputated from the first line and column,
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exhibits an invertible (group) structure. All operations are commutative as can be seen from
the symmetry of tables 1 to 4 under transposition. When N is an arbitrary integer power, it is
easy to derive the addition table of the corresponding field because it reduces to the addition
componentwise:

i ⊕ Gj =
m−1∑
n=0

inp
n ⊕ G

m−1∑
n=0

jnp
n =

m−1∑
n=0

(in + mod p jn)p
n

For instance, if we express quartits as products of two qubits: |0〉4 = |0〉2 ⊗ |0〉2, |1〉4 =
|0〉2 ⊗ |1〉2, |2〉4 = |1〉2 ⊗ |0〉2, |3〉4 = |1〉2 ⊗ |1〉2. It is then easy to check from table 2 that if
|i〉4 = |i1〉2 ⊗ |i2〉2, and |j 〉4 = |j1〉2 ⊗ |j2〉2, then |i⊕Gj 〉4 = |i1 ⊕mod 2 j1〉2 ⊗ |i2 ⊕mod 2 j2〉2.
This is nothing else than the addition modulo p (= 2 here) componentwise. It is worth noting
that it is not straightforward in general to derive the field multiplication table but this can be
done. The construction of such tables is based on the properties of irreducible polynomials that
we shall not describe in the present paper (see for instance appendix D in [13] and references
therein). All we need to know is that such tables exist.

In prime dimensions however a simplification occurs, and the Galois and modulo N
operations coincide. In prime power but non-prime dimensions, this is no longer true. It is also
worth noting that the property

∑N−1
p=0 γ (p�q) = Nδq,0 is true for the modulo N multiplication

as well, in arbitrary dimension, but γ must be taken to be equal to the Nth root of unity in this
case. Because of this, certain identities and properties related to the Heisenberg–Weyl group
can be generalized in arbitrary dimensions provided the factor γ is chosen accordingly.

2. Construction of the dual basis

Let us now consider the unitary transformations V 0
l that shift each label of the states of the

computational basis ({|0〉, |1〉, . . . , |i〉, . . . , |N − 1〉}) by a distance l (|i〉 → |i ⊕ Gl〉) (the
reason for our choice of notation will be made obvious soon). The transformations V 0

l form
a commutative group with N elements that is isomorphic to the Galois addition. Generalizing
the procedure outlined in [9], we define the dual basis as follows,

|j̃〉 = 1√
N

N−1∑
k=0

γ
�G(k�Gj)

G |k〉, (3)

where the symbol �G represents the inverse of the Galois addition ⊕G. It is easy to check
that the dual states are invariant, up to a global phase, under the transformations V 0

l . Indeed,
we have

V 0
l · |j̃ 〉 = 1√

N

N−1∑
k=0

γ
�G(k�Gj)

G |k ⊕G l〉 (4)

= 1√
N

N−1∑
k′=0

γ
(�G(k′�Gl)�Gj)

G |k′〉 = γ
(l�Gj)

G |j̃〉. (5)

Obviously, the dual basis and the computational basis are mutually unbiased. When the
dimension is prime (N = p), the dual basis is the discrete Fourier transform of the
computational basis, when it is a power of 2, it is a Hadamard transform [9].

Let us denote V l
0 the unitary transformations that shift each label of the states of the

dual basis ({|0̃〉, |1̃〉, . . . , |ĩ〉, . . . , |Ñ − 1̃〉}) by a distance �Gl (|ĩ〉 → |ĩ �G l̃〉). The
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transformations V l
0 form a commutative group with N elements that is isomorphic to the

Galois addition. These operators are diagonal in the computational basis,

V l
0 =

N−1∑
k=0

|k̃ �G l̃〉〈k̃| =
N−1∑
k=0

γ
(k�Gl)
G |k〉〈k|. (6)

This is the dual counterpart of a similar expression for the shifts in the computational basis,

V 0
l =

N−1∑
k=0

|k ⊕ Gl〉〈k| =
N−1∑
k=0

γ
(k�Gl)
G |k̃〉〈k̃|. (7)

3. Construction of the remaining N − 1 mutually unbiased bases

In the previous section, we derived a set of two bases, the computational basis and the dual
basis, that are mutually unbiased. In this section, we shall generalize this derivation in order
to obtain N − 1 other mutually unbiased bases (between each other, and also relatively to the
computational and dual bases).

Let us denote V
j

i the compositions of the shifts in the computational and the dual basis,
V

j

i = V
j

0 · V 0
i .

V
j

i = V
j

0 · V 0
i =

N−l∑
l=0

γ l�Gj |l〉〈l|
N−l∑
k=0

|k ⊕G i〉〈k|

=
N−1∑
k=0

γ
((k⊕Gi)�Gj)

G |k ⊕G i〉〈k|, i, j : 0, . . . , N − 1 (8)

Here, the product · expresses the matricial product (the usual composition law of two unitary
transformations). Although this expression appeared, to our knowledge, in [20] for the first
time, we show in the final section that the set of operators so-defined coincides with the
generalized Pauli group studied in [3].

It is worth noting that most often V
j

0 and V 0
i do not commute.

V
j

i = V
j

0 · V 0
i =

N−l∑
k=0

γ ((k⊕Gi)�Gj)|k ⊕G i〉〈k| (9)

V 0
i · V

j

0 =
N−l∑
k=0

|k ⊕G i〉〈k|
N−l∑
l=0

γ l�Gj |l〉〈l|

=
N−l∑
k=0

γ (k�Gj)|k ⊕G i〉〈k|

= γ �G(i�Gj)V
j

0 · V 0
i = γ �G(i�Gj)V

j

i . (10)

The commutator is thus given by the following expression:

V
j

0 · V 0
i − V 0

i · V
j

0 = (
1 − γ �G(i�Gj)

)
V

j

0 · V 0
i . (11)

We recognize here a commutation rule that is known as the Weyl commutation rule, and
was already studied a long time ago [8]. This is not astonishing because the set of unitary
transformations V

j

i that we consider here is a discrete version of the so-called Heisenberg–
Weyl group (compositions of translations in position and in impulsion). In dimension 2, it
coincides with the Pauli group. When the dimension is a prime number, the field operations
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are the addition and multiplication modulo p, and the properties of mutually unbiased bases are
already well known in that case [1], as well as their relation with the ‘Heisenberg–Weyl–Pauli’
group [10]. In the present approach, we consider, instead of the usual (modulo N) operations,
the Galois addition and multiplication, also for non-prime but prime power dimensions. The
connection with previous works related to the Pauli group approach [2, 3, 11–13] is established
in the final section.

By a straightforward computation, we can now derive the law of composition of these N2

unitary transformations,

V
j

i · V k
l = V

j

0 · V 0
i · V k

0 · V 0
l

= γ �G(i�Gk)V
j

0 · V k
0 · V 0

i · V 0
l

= γ �G(i�Gk)V
j⊕Gk

i⊕Gl . (12)

Up to a global phase, this looks like a groupal composition law. We shall now show
that (up to phases) the N2 unitary transformations V

j

i form N + 1 commuting subgroups of N
elements that have only the identity in common. Moreover, each of these subgroups admits a
diagonal representation in a basis that is mutually unbiased relatively to the N bases in which
the other subgroups are diagonal. Actually, the last property can be shown, following an
alternative approach developed in [3] to be a consequence of the fact that the V operators, up
to phases, form what is called a maximally commuting basis of orthogonal unitary matrices
(see also the final section). The new ingredients in our approach are (1) expression (8) for
the generalized Pauli operators, and (2) the recognition of the fact that the operators of the
commuting subgroups exhibit exact groupal composition laws, provided they are multiplied
by a convenient phase factor.

In order to derive all these results, we shall take them for granted a first time, and check
afterwards that our hypothesis was correct. It is convenient to introduce new notation and
definitions before we proceed. We shall denote Ui

l the elements of these subgroups, where i
labels the subgroup and runs from 0 to N (there are N + 1 of them), while l labels the elements
of the subgroup and runs from 0 to N − 1 (each subgroup contains N elements). We know
already the two first subgroups, that admit a diagonal representation in the computational and
dual bases. The first one (i = 0) contains the elements V l

0(l: 0, . . . , N − 1), so by definition
U 0

l = V l
0(l: 0, . . . , N − 1). The second one contains the elements U 1

l = V 0
l (l: 0, . . . , N − 1).

In virtue of equalities (6) and (7), we can also write U 0
l = ∑N−1

k=0 γ
(k�Gl)
G |k〉〈k| and

U 1
l = ∑N−1

k=0 γ
(k�Gl)
G |k̃〉〈k̃|. A similar expression can be found for each of the N −1 remaining

subgroups as we shall now show. It is convenient at this level to parametrize the basis states that
diagonalize these subgroups as follows: the kth basis state that diagonalizes the ith subgroup
will be denoted as

∣∣ei
k

〉
. Our ultimate goal is to prove that there exist N + 1 bases

∣∣ei
k

〉
and N2

operators Ui
l that are in one-to-one correspondence with the V operators and differ from them

by an appropriate phase factor, such that the following constraints are fulfilled:

Ui
l =

N−1∑
k=0

γ
(k�Gl)
G

∣∣ei
k

〉〈
ei
k

∣∣(l: 0, . . . , N − 1; i: 0, . . . , N) (13)

〈
ek
i

∣∣el
j

〉 · 〈el
j

∣∣ek
i

〉 = δk,lδi,j + (1/N).(1 − δk,l), (k, l: 0, . . . , N, i, j : 0, . . . , N − 1). (14)

In virtue of the commutativity of the Galois multiplication, of identity (1) and of definition (13),
the U operations that are labelled by the same value i form a commutative subgroup and obey the
(exact) group composition law Ui

l · Ui
l′ = Ui

l⊕Gl′ . We can guess that they correspond to families
of operators V k

l such that the (Galois) ratio k/Gl is constant, because when k′ �G l = k �G l′,
then V k

l and V k′
l′ commute in virtue of the Weyl commutation rule (11). It is thus natural to try
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the identification Ui
l = V

(i−1)�Gl
l , up to a phase, when i differs from 0 and U 0

l = V l
0 which is

consistent with our previous conventions. There are in general several ways to fix the phases
but in any case certain constraints must be satisfied:

• the phase Ui
l

/
V

(i−1)�Gl
l is equal to 0 when l = 0, because V 0

0 = 1, and the identity is
present in all subgroups;

• as we mentioned already, the U operators must obey the composition law Ui
l⊕Gl′ = Ui

l U
i
l′ ,

but the composition law V
j

i ·V k
l = γ �G(i�Gk)V

j⊕Gk

i⊕Gl must be guaranteed at the same time,
which restricts seriously the arbitrariness in the choice of the phase.

Let us now assume that the phase ratio between Ui
l and V

(i−1)�Gl
l is fixed for all powers

of p between 0 and m − 1 (l = pn, 0 � n � m − 1).
We shall first treat the odd-dimensional case. Then, iterating l times the composition law

(12) (with 2 � l � m − 1), we obtain the following constraints on the ratio between Ui
pn�Gl

and V
(i−1)�Gpn�Gl

pn�Gl , 0 � l � m − 1, 0 � n � m − 1:

(
Ui

pn�Gl

) =
N−1∑
k=0

γ
pn�Gk�Gl

G

∣∣ei
k

〉〈
ei
k

∣∣ = (
Ui

pn

)l

= (
Ui

pn

/
V

(i−1)�Gpn

pn

)l · (
V

((i−1)�Gpn)
pn

)l

= (
Ui

pn

/
V

(i−1)�Gpn

pn

)l · γ
�G(i−1)�Gl�G(l�G1)�Gpn�Gpn/G2
G · V

((i−1)�Gpn�Gl)

pn�Gl . (15)

Here, the symbols / and /G indicate the multiplication by the multiplicative inverse for
the usual (complex) and field multiplications respectively. In order to fix the phase(
U

(i�Gpn)
pn

/
V

(i−1)�Gpn

pn

)
we can make use of the fact that the characteristic of the field is p

(so to say 1 ⊕ G1 ⊕ G · · · ⊕ G1 (p times) = 0), which implies that
(
Ui

pn

)p = 1, so that(
Ui

pn

/
V

(i−1)�Gpn

pn

)p = γ
(i−1)�Gp�G(p�G1)�Gpn�Gpn/G2
G = 1. (16)

The phase
(
Ui

1

/
V

(i−1)�Gpn

pn

)
is thus determined up to an integer power of γG = ei2π/p. This

is true for each integer value of n between 0 and m − 1 so that there are pm = N different
possible ways to ‘fix’ the phases. Let us denote γn the pth root of unity that we choose to
be equal to Ui

pn

/
V

(i−1)�Gpn

pn . Once this value is chosen, all the other phases are determined,
according to the following development,

Ui
l =

∏m−1

n=0
Ui

ln�Gpn =
∏m−1

n=0

(
Ui

pn

)ln

=
∏m−1

n=0
γ

�G(i−1)�Gln�G(ln�G1)�Gpn�Gpn/G2
G (γn)

lnV
((i−1)�Gpn�Gln)

pn�Gln
, (17)

where the coefficients ln are unambiguously defined by the p-ary expansion of l, l =∑m−1
n=0 lnp

n. Moreover, we can check by direct computation that the U operators so-defined
obey an exact groupal composition law, independently of the choice that we could decide to
perform, among the pm = N different possible ways to ‘fix’ the phases γn,

Ui
l1

· Ui
l2

=
∏m−1

n=0
Ui

l1n�Gpn · Ui
l2n�Gpn

=
∏m−1

n=0
γ

�G(i−1)�Gl1n�G(l1n�G1)�Gpn�Gpn/G2
G γ

�G(i−1)�Gl2n�G(l2n�G1)�Gpn�Gpn/G2
G

(γn)
l1n (γn)

l2nV
((i−1)�Gpn�Gl1n)

pn�Gl1n
V

((i−1)�Gpn�Gl2n)

pn�Gl2n

=
∏m−1

n=0
γ

�G(i−1)�Gpn�Gpn�G(l1n�G(l1n�G1)⊕Gl2n�G(l2n�G1)⊕G2�Gl1n�Gl2n)/G2
G

(γn)
l1n+modpl2nV

((i−1)�Gpn�G(l1n+modpl2n))

pn�G(l1n+modpl2n)
. (18)
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In the previous derivation we made use of decomposition (17), of the composition law and of
the fact that the γn are nth roots of unity. Thanks to some arithmetic made possible by the field
properties and making use again of decomposition (17) the other way round, we establish an
exact composition law for the U operators.

Ui
l1

· Ui
l2

=
∏m−1

n=0
γ

�G(i−1)�Gpn�Gpn�G((l1n+mod pl2n)�G((l1n+mod pl2n)�G1)/G2
G

(γn)
l1n+mod pl2nV

((i−1)�Gpn�G(l1n+modpl2n))

pn�G(l1n+mod pl2n)
=

∏m−1

n=0

(
Ui

pn

)l1n+mod pl2n

=
∏m−1

n=0

(
Ui

(l1n+modpl2n)�Gpn

) = Ui
l1⊕Gl2

. (19)

In even prime power dimensions, the treatment is similar, although we may not divide by
2 in this case. Combining the constraints(

V
((j−1)�G2n)

2n

)2 = (
γ

�G(j−1)�G2n�G2n

G V 0
0

) = γ
(j−1)�G2n�G2n

G

and

U
j

2nU
j

2n = U
j

2n⊕G2n = U
j

0 = 1,

we obtain a decomposition law for the U operators, which expresses their factorization in
terms of qubit operators,

U
j

l =
∏m−1

n=0
U

j

ln�G2n =
∏m−1

n=0

(
U

j

2n

)ln

=
∏m−1

n=0

(
γ

(j−1)�G2n�G2n

G

) ln
2 V

((j−1)�G2n�Gln)

2n�Gln
, (20)

where the coefficients ln are unambiguously defined by the binary expansion of l, l =∑m−1
k=0 ln2n; ln = 0 or ln = 1. Similarly to what happens in the odd-dimensional case,

the phase factors
(
γ

(j−1)�G2n�G2n

G

) 1
2 can be fixed with some arbitrariness, actually up to a sign

in this case. Let us now check that the U operators so-defined obey an exact group composition
law.

U
j

l1
· U

j

l2
=

∏m−1

n=0

(
γ

(j−1)�G2n�G2n

G

) l1n+l2n
2

(
V

((j−1)�G2n)

2n

)l1n+l2n

=
∏m−1

n=0

(
γ

(j−1)�G2n�G2n

G

) l1n+mod2 l2n
2

(
V

((j−1)�G2n)

2n

)l1n+mod 2l2n = U
j

l1⊕Gl2
. (21)

We made use of the fact that
(
V

((j−1)�G2n)

2n

)2 = γ
(j−1)�G2n�G2n

G and γG = −1.

Let us now derive an explicit expression for the N phases U
j

1

/
V

(j−1)�Gl

l . We shall treat
separately even and odd prime power dimensions.

3.1. Odd prime power dimensions

In odd prime power dimensions, all possible consistent choices for determining the phases
(there are pm = N such choices) can be expressed by the relation

Ui
l

/
V

(i−1)�Gl
l = (

γ
�((i−1)�Gl�Gl)/G2
G

)
γ k�l

G , (22)

where k is an arbitrary element of the field. Each choice for k (there are N of them) leads to
another consistent determination of the phase ratio between the U and V operators. This is
due to the fact that if γ

k�pn

G = γ
k′�pn

G ,∀n: 0 � n � m−1, then k = k′ in virtue of identity (2).
It is worth noting that, when k = 0, which is the simplest determination of the phases, we

obtain the following relation:

Ui
l = (

γ
�((i−1)�Gl�Gl)/G2
G

)
V

(i−1)�Gl
l . (23)
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This corresponds to the choice of phases γn = γ
�((i−1)�Gpn�Gpn)/G2
G . It is worth noting that

relation (23) is also valid for i = 1, which corresponds to the dual basis derived in the previous
section.

For i = 0, U 0
l = V l

0 , in agreement with the previous definitions.
In order to check the consistency of expression (22), it is sufficient, making use of the

composition law for the V operators (12), to check by direct computation that the U operators
obey an exact (that is, not up to a phase) group composition law. It is worth remarking that
if Ũ i

l = γ k�l
G Ui

l , and that Ui
l · Ui

l′ = Ui
l⊕Gl′ , then Ũ i

l .Ũ
i
l′ = Ũ i

l⊕Gl′ . Therefore, it is sufficient
to establish the groupal composition law when expression (23) is valid, in order to establish it
when expression (22) is valid, for any value of k.

Ui
l · Ui

l′ = (
γ

�((i−1)�Gl�Gl)/G2
G

)(
γ

�((i−1)�Gl′�Gl′)/G2
G

)
V

(i−1)�Gl
l V

(i−1)�Gl′
l′

= (
γ

�((i−1)�Gl�Gl)/G2
G

)(
γ

�((i−1)�Gl′�Gl′)/G2
G

)(
γ (�G(i−1)�Gl�Gl′))V (i−1)�G(l⊕Gl′)

(l⊕Gl′)

= (
γ

�((i−1)�G(l⊕Gl′)�G(l⊕Gl′))/G2
G

)
V

(i−1)�G(l⊕Gl′)
(l⊕Gl′)

= Ui
l⊕Gl′ , i: 1, . . . , N, l, l′: 0, . . . , N − 1. (24)

Now that we have at our disposal an exact expression for the operators U, we can also
derive an explicit expression for the N − 1 dual bases associated with the subgroups that
correspond to the operators Ui

l ; i − 1 = 1, . . . , N − 1. This can be realized thanks to the
following identity, a direct consequence of equations (13) and (2),

∣∣ei
k

〉〈
ei
k

∣∣ = 1

N

N−1∑
l=0

γ �Gk�GlU i
l . (25)

Obviously, if we choose another determination of the phases, that is, if we replace Ui
l by

Ũ i
l = γ k′�l

G Ui
l , we obtain the same basis states, with their labels shifted by k′. It is thus more

convenient to choose in what follows the simplest phase determination (23).
By a straightforward but lengthy computation that we do not reproduce here, we obtain

then the expression, in the computational basis, of the states of N − 1 bases that correspond
to the non-null values of the label i − 1.

∣∣ei
k

〉 = 1√
N

N−1∑
q=0

γ
�Gq�Gk

G

(
γ

((i−1)�Gq�Gq)/G2
G

)∣∣e0
q

〉
. (26)

Actually, the previous expression is also valid when i = 1, which corresponds to the dual
basis |j̃〉 (3).

Let us now check by direct computation that the N bases (N − 1 plus the dual basis) so
obtained are orthonormal and mutually unbiased between each other (it is easy to check that
the computational basis also fulfils these requirements). Before we do so, we shall rewrite the
factors

(
γ

�((i−1)�Gq�Gq)/G2
G

)
as follows:

(
γ

�((i−1)�Gl�Gl)/G2
G

) = Ui
1

/
V

(i−1)�Gl
l = (

γ
�((i−1)�Gl�Gl)
G

) 1
2 . (27)

This redefinition is less precise than the previous one, because there exist two determinations
of the square root of a complex number, nevertheless we adopt it, having in mind that in
odd prime power dimensions, the previous expression fixes the sign of the square root of(
γ

�((i−1)�Gl�Gl)
G

)
without ambiguity. We shall show in the following section that a similar

expression is also valid in the even-dimensional case. Let us now prove that expression (14)
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is valid.〈
el
j

∣∣ek
i

〉 = 1

N

N−1∑
q=0

γ
�Gq�G(i�Gj)

G

(
γ

((k−1)�G(l−1))�Gq�Gq

G

) 1
2 (28)

〈
el
j

∣∣ek
i

〉 · 〈
ek
i

∣∣el
j

〉· = 1

N2


N−1∑

q=0

γ
�Gq�G(i�Gj)

G

(
γ

((k−1)�G(l−1))�Gq�Gq

G

) 1
2




×

N−1∑

q ′=0

γ
�Gq ′�G(j�Gi)

G

(
γ

((l−1)�G(k−1))�Gq ′�Gq ′
G

) 1
2




= 1

N2


N−1∑

q=0

γ
�Gq�G(i�Gj)

G

(
γ

((k−1)�G(l−1))�Gq�Gq

G

) 1
2




×
(

N−1∑
t=0

γ
�G(q⊕Gt)�G(j�Gi)

G

(
γ

((l−1)�G(k−1))�G(q⊕Gt)�G(q⊕Gt)

G

) 1
2

)

= 1

N2


 N−1∑

q,t=0

γ
t�G(j�Gi)

G

(
γ

2((l−1)�G(k−1))�Gq�Gt

G

) 1
2 · (

γ
((l−1)�G(k−1))�Gt�Gt
G

) 1
2




= 1

N2


 N−1∑

q,t=0

γ
((t�G(j�Gi)⊕G((l−1)�G(k−1))�Gq�Gt)

G · (
γ

((l−1)�G(k−1))�Gt�Gt
G

) 1
2




= 1

N2


N−1∑

t=0


N−1∑

q=0

γ
(((l−1)�G(k−1))�Gt�Gq)

G


 · γ

(t�G(j�Gi))

G · (
γ

((l−1)�G(k−1))�Gt�Gt
G

) 1
2




= 1

N

N−1∑
t=0

δ((l−1)�G(k−1))�Gt,0) · γ
(t�G(j�Gi))

G · (
γ

((l−1)�G(k−1))�Gt�Gt
G

) 1
2 (29)

The previous derivation is a bit lengthy but is a direct consequence of the identities 1 and 2, and
of an appropriate renaming of the dummy indices. Now, there is no divider of 0 except 0 itself
(the multiplication �G forms a division ring or field) so that δa�Gb,0 = δa,0 + (1 − δa,0) · δb,0

and thus∥∥〈
el
j

∣∣ek
i

〉∥∥2 = δ(l−1)�G(k−1),0δi,j +
(
1 − δ(l−1)�G(k−1),0

)
× 1

N

N−1∑
t=0

δt,0 · γ
(t�G(j�Gi))

G · (
γ

((l−1)�G(k−1))�Gt�Gt
G

) 1
2

= δk,lδi,j + (1/N) · (1 − δk,l). (30)

Finally, let us control the validity of the postulated expression (13),
N−1∑
k=0

γ
(k�Gl)
G

∣∣ei
k

〉〈
ei
k

∣∣ =
N−1∑
k=0

γ
(l�Gk)
G

1

N

N−1∑
q=0

γ
�Gq�Gk

G

(
γ

((i−1)�Gq�Gq)

G

) 1
2
∣∣e0

q

〉

×
N−1∑
q ′=0

γ
⊕Gq ′�Gk

G

(
γ

(�(i−1)�Gq ′�Gq ′)
G

) 1
2
〈
e0
q ′
∣∣

= N

N

N−1∑
q,q ′=0

δq,q ′⊕Gl

(
γ

((i−1)�Gq�Gq�(i−1)�Gq ′�Gq ′)
G

) 1
2
∣∣e0

q

〉〈
e0
q ′
∣∣
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=
N−1∑
q ′=0

(
γ

((i−1)�G(q ′⊕Gl)�G(q ′⊕Gl)�(i−1)�Gq ′�Gq ′)
G

) 1
2
∣∣e0

q ′⊕Gl

〉〈
e0
q ′
∣∣

= (
γ

((i−1)�Gl�Gl)
G

) 1
2

N−1∑
q ′=0

γ
(((i−1)�Gl)�Gq ′)
G

∣∣e0
q ′⊕Gl

〉〈
e0
q ′
∣∣

= Ui
l (l: 0, . . . , N − 1, i: 1, . . . , N). (31)

Here again,most of the equalities are derived from identities (1) and (2). The last equality is a
consequence of equations (8) and (23).

3.2. Even prime power dimensions

In this case the explicit expressions for the mutually unbiased bases are less easy to manipulate.
Once again, there are pm (2m in this case) possible ways to determine the phases U

j

1

/
V

(j−1)�Gl

l ,
but they are equivalent, up to a relabelling of the basis states.

In the next development, we shall implicitly choose a certain determination of the square
root of γ

(j−1)�G2n�G2n

G that is equal to i(j−1)�G2n�G2n

.

U
j

l =
∏m−1

n=0
U

j

ln�G2n =
∏m−1

n=0

(
U

j

2n

)ln =
∏m−1

n=0,ln �=0

(
γ

(j−1)�G2n�G2n

G

) 1
2
(
V

((j−1)�G2n)

2n

)ln

=
∏m−1

n=0,ln �=0
i(j−1)�G2n�G2n(

V
((j−1)�G2n)

2n

)
=

(∏m−1

n=0,ln �=0
i(j−1)�G2n�G2n

γ
(j−1)�G2n�G2n′

G

)
V

((j−1)�Gl)

l (32)

where the coefficients ln are unambiguously defined by the p-ary (here binary) expansion of
l, l = ∑m−1

k=0 ln2n, while n′ is the smallest integer strictly larger than n such that ln′ �= 0, if it
exists, 0 otherwise.

This result is a generalization of identity (23), because in both cases the phases are square
roots of integer powers of gamma,(

U
j

1

/
V

(j−1)�Gl

l

)2 = γ
�((j−1)�Gl�Gl)

G .

Nevertheless, in the present case we obtain the following determination of the square root
of

(
γ

�((j−1)�Gl�Gl)

G

)
:(

γ
�((j−1)�Gl�Gl)

G

) 1
2 = (

γ
⊕((j−1)�Gl�Gl)

G

) 1
2 =

∏m−1

n=0,ln �=0
i(j−1)�G2n�G2n

γ
(j−1)�G2n�G2n′

G (33)

where n′ and ln were defined previously. What is particular with even prime powers is that
the square root of an integer power of γG is not an integer power of γG as is the case in odd
prime power dimensions. We are forced to introduce +i and −i. What is interesting is that this
minimal extension is sufficient in order to diagonalize the operators of the generalized Pauli
group in even prime power dimensions, a fact that was already recognized in [2, 16] on the
subject.

Combining equations (26) and (27), we obtain the synthetic expression:

∣∣ei
k

〉 = 1√
N

N−1∑
q=0

γ
�Gq�Gk

G

(
γ

((i−1)�Gq�Gq)

G

) 1
2
∣∣e0

q

〉
. (34)

Taking equation (33) into account we get an explicit expression for the mutually unbiased
bases, ∣∣ei

k

〉 = 1√
N

N−1∑
q=0

γ
�Gq�Gk

G

∏m−1

n=0,qn �=0
i(j−1)�G2n�G2n

γ
(j−1)�G2n�G2n′

G

∣∣e0
q

〉
, (35)
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where q = ∑m−1
k=0 qn2n, while n′ is the smallest integer strictly larger than n such that qn′ �= 0,

if it exists, 0 otherwise.
As a consequence of the composition laws (13) and (21),

U
j

l1
· U

j

l2
= (

γ
(j−1)�Gl1�Gl1
G

) 1
2 · (

γ
(j−1)�Gl2�Gl2
G

) 1
2 γ (j−1)�G(l1�Gl2)V

(j−1)�G(l1⊕Gl2)

l1⊕Gl2

= (
γ

(j−1)�G(l1⊕Gl2)�G(l1⊕Gl2)

G

) 1
2 · V

(j−1)�G(l1⊕Gl2)

l1⊕Gl2
= U

j

l1⊕Gl2
. (36)

Therefore,(
γ

(j−1)�Gl1�Gl1
G

) 1
2 · (

γ
(j−1)�Gl2�Gl2
G

) 1
2 · γ (j−1)�G(l1�Gl2) = (

γ
(j−1)�G(l1⊕Gl2)�G(l1⊕Gl2)

G

) 1
2 . (37)

Formally we can rewrite the previous equation in the form(
γ

(j−1)�G(a⊕Gb)�G(a⊕Gb)

G

) 1
2 = (

γ
(j−1)�G(a�Ga)

G

) 1
2 · (

γ
(j−1)�G(b�Gb)

G

) 1
2 · (

γ
2.((j−1)�Ga�Gb)

G

) 1
2 ,

which is reminiscent of equation (1), although we are dealing here with half integer powers
of γG instead of integer powers. Thanks to this property, it is possible to reproduce nearly
literally the proofs given in odd prime power dimensions of the validity of identities (13) and
(14), because the automatisms of computation are nearly equivalent. It is important to note

however that in even prime power dimensions the expressions of the type
(
γ

(a�Ga)
G

) 1
2 do well

represent square roots of γ
(a�Ga)
G but must be considered as functions that depend on the 2m

variables a instead of only two variables, as would be the case if we considered literally square
roots of integer powers of γG (with γG = −1). When a is specified, the sign of the square root
is also specified, according to the explicit expression (33). The even- and odd-dimensional
cases are covered by the synthetic expression (34). It is worth noting that identity (37) is not
valid for arbitrary determinations of the square roots that appear in it; it is valid in our case as
a consequence of the fact that the U operators of the same class (labelled by the same upper
index i) were shown to obey an exact groupal composition law.

4. Open questions, comments and conclusions

4.1. Other symmetries

At first sight, the computational basis plays a special role in our approach, but one can show
that, to some extent, all the mutually unbiased bases can be treated on the same footing. This
can be seen as follows. Now that we have at our disposal an explicit expression ((26), (35))
for all the mutually unbiased bases, we can ‘reevaluate the situation from the point of view of
one of them’, say the ith basis (with i different from zero). In order to do so, we can express
the action of the operator V m

n in terms of its basis states. After a straightforward computation,
we get that

V n
m(0) = phase · V m

�Gn⊕G(i−1)�Gm(i),

where

V n
m(0) =

N−1∑
k=0

γ
((k⊕Gm)�Gn)
G

∣∣e0
k⊕Gm

〉〈
e0
k

∣∣
and

V n
m(i) =

N−1∑
k=0

γ
((k⊕Gm)�Gn)
G

∣∣ei
k⊕Gm

〉〈
ei
k

∣∣; i: 1, . . . , N.

These relations (that we give without proof but are easy to derive from (26) and (35)) are
bijective. So the whole discrete Heisenberg–Weyl group is invariant (up to permutations and
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phase shifts) when we reexpress it in any of the N + 1 mutually unbiased bases. We shall not
develop this question here, but this property has important implications in the theory of cloning
machines, in relation to error operators and optimal cloning [9, 14]. In prime dimensions,
the invariance of the Heisenberg–Weyl group under conjugation by any unitary matrix that
maps the computational basis onto a mutually unbiased basis is a well-known property of
the extended Clifford group that possesses many applications in number theory and quantum
computing [15].

Besides, there exists a one-to-one correspondence between generalized Bell states [20]
and the Heisenberg–Weyl group. The properties of invariance of the Bell states in mutually
unbiased bases were shown in [19] to be very useful in the derivation of a solution of the
so-called mean King problem [10, 17, 18]. In [19], these properties are shown to lead to an
elegant expression of the solution valid in all prime power dimensions, a special case of the
general solution given in [18].

4.2. Connection with previous works

The expression of the states of the mutually unbiased bases that we derived in the

present paper
(∣∣ei

k

〉 = 1√
N

∑N−1
q=0 γ

�Gq�Gk

G

(
γ

((i−1)�Gq�Gq)

G

) 1
2
∣∣e0

q

〉)
is actually equivalent to

the solution derived by Ivanovic [1] when the dimension is an odd prime (which can be
shown, when rewritten according to our conventions, to be equivalent to the expression∣∣ei

k

〉Ivan. = 1√
N

∑N−1
q=0 γ

�Gq�Gk

G

(
γ

((i−1)�Gq�Gq)

G

)∣∣e0
q

〉)
. Our expression differs by a factor 1/G2

in one of the exponents of γG. When the dimension is prime and odd, it is easy to compensate
the difference by a relabelling of the basis states, because the division by 2 is a permutation
of the finite fields with p elements when p is a prime odd number. Contrarily to Ivanovic’s
expression, our expression is easily generalized in even prime dimension 2 (the qubit case) (in
which case we rederive the eigenbases of the Pauli operators) and in prime power dimensions.

As was shown by Wootters and Fields [2], the generalization in prime power dimensions
of Ivanovic’s expression is the following:

∣∣ei
k

〉 = 1√
N

N−1∑
q=0

γ
Tr·(�Gq�Gk)

G

(
γ

Tr·(r�Gq�Gq)

G

)∣∣e0
q

〉
, (38)

where Tr· represents the field theoretical trace. Our expression seems to be a bit simpler,
but both expressions require knowing the addition and multiplication tables of the field, so
that the apparent gain in simplicity is relative. Moreover, both expressions are equivalent up
to a relabelling in odd prime power dimensions as we shall now show. We could establish
the equivalence at once but we prefer to base our derivation on the results of [3] where the
interrelation between the Pauli group approach and the expression of Wootters and Fields
with the trace factor is made (section 4.3, [3]). Actually, there also exist different groups that
present properties similar to those of the generalized Pauli group [12] but do not obey the
definition that we gave here. Nevertheless, the generators of the two subgroups corresponding
to the computational and the dual basis that are given in [3] coincide with our choice (the
subgroups V l

0 and V 0
l correspond to the classes C0 and C1 studied in [3]) so that we are

talking about exactly the same group, up to phases. As, in the same paper, a relation was
established with the solution of Wootters and Fields [2], our expression for mutually unbiased
bases must necessarily coincide with their expression. In [3], it is shown that when there exists
a maximal commuting basis of orthogonal unitary matrices, the N + 1 bases that diagonalize
these classes are unambiguously defined and, moreover, are mutually unbiased. A maximal
commuting basis of orthogonal unitary matrices is a set of N + 1 sets of N − 1 commuting
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unitary operators (or classes) plus the identity such that these N2 operators are orthogonal
regarding the in-product induced by the (usual operator) trace denoted by tr·. It is easy to
show that the V operators defined in (8) are unitary with

(
V

j

i

)+ = (
V

j

i

)−1 = γ �G(i�Gj)V
�Gi
�Gj

and that tr · V
j

i = N · δi,0 · δj,0. Making use of the composition law (13), we obtain the
relation tr · ((

V
j

i

)+ · V k
l

) = N · δi,l · δj,k so that they form a maximal commuting basis of
unitary operators. This theorem suggests another way to derive an expression for the mutually
unbiased bases: it is sufficient to find the common eigenstates of the classes of operators
V

(i−1)�Gl
l (where l varies from 0 to N − 1) in order to determine the value of the states of the

ith mutually unbiased basis. When the dimension is an odd (even) prime power, one can check
by direct substitution of expression (26) or (35) that the states

∣∣ei
k

〉
are common eigenstates of

the ith class,

V
(i−1)�Gl
l

∣∣ei
k

〉 =
N−1∑
k′=0

γ
((k′⊕Gl)�G(i−1)�Gl)
G |k′ ⊕ Gl〉

× 〈k′| 1√
N

N−1∑
q=0

γ
�Gq�Gk

G

(
γ

((i−1)�Gq�Gq)/G2
G

)∣∣e0
q

〉

= 1√
N

N−1∑
q=0

γ
((q⊕Gl)�G(i−1)�Gl)

G γ
�Gq�Gk

G

(
γ

((i−1)�Gq�Gq)/G2
G

)∣∣e0
q⊕Gl

〉

= γ
(l�Gk)
G γ

((i−1)�Gl�Gl)/G2)

G

1√
N

N−1∑
q⊕Gl=0

γ
�G(q⊕Gl)�Gk

G

× (
γ

((i−1)�G(q⊕Gl)�G(q⊕Gl))/G2
G

)∣∣e0
q⊕Gl

〉
. (39)

Thanks to the product law (37), the proof is entirely similar in even prime power dimensions.
In order to establish explicitly and once and for all the equivalence between the expression

of Wootters and Fields (38) and ours (26), some work remains to be done because in [3] no
proof is given of the fact that expression (38) represents eigenstates of the generalized Pauli
operators. In order to prove this result, it is useful to introduce two (field theoretical) dual
bases, the first one, which is dual relatively to the trace contains m elements p̃ of the field
such that Tr · pi �G p̃j = δi,j ; the second one which is dual relative to the rest after division
by p contains m elements ˜̃pj of the field such that (pi �G

˜̃pj )0 = δi,j , where (q)0 represents
(we work in dimension pm) the rest after division of q by p. These bases can be shown to
exist and to be unique, in virtue of the fact that the bilinear forms Tr · (x �G y) and (x �G y)0

are non-singular [34]. The non-singular character of the form (x �G y)0 is actually a direct
consequence of identity (2). Besides, the m generators of the kth class considered in [3] are
equal to Xi · ∏m−1

l=0

(∏m−1
j=0 (Zj )b

l
ij

)kl , with j, l : 0, . . . , m − 1. In the previous expression, the

coefficients kl are unambiguously defined by the p-ary expansion of k, k = ∑m−1
l=0 klp

l while
the multiplication matrix b is defined as follows: γi �G γj = ∑m−1

l=0 bl
ij γl , where the γ are a

basis of the field (here we shall consider without loss of generality that γi = pi). The operators
Xi are ‘local’ operators that shift the ith component of the label of the kth basis state

∣∣e0
k

〉
(with

k = ∑m−1
l=0 klp

l) by unity (modulo p), Xi
∣∣e0

k

〉 = ∣∣e0
k′
〉
with k′

i = ki +mod·p 1, k′
l = kl when l �= i.

The operator Zj multiplies the state
∣∣e0

k

〉
by a global phase equal to γ

kj

G . In our approach,
the generators of the k′th class can be shown to be the same, provided the coefficients of k′

expressed in the double-tilded dual basis ˜̃pj defined here above are the same as those of k
in the direct basis p: k = ∑m−1

l=0 klp
l and k′ = ∑m−1

j=0 kj
˜̃pj . Besides, the expressions with
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and without Trace (26) and (38) are equivalent, up to a bijective relabelling, in virtue of the
identity Tr · (r �G k) = ((r ′/G2) �G k)0 with k and r arbitrary elements of the Galois field
with N = pm elements, r = ∑m−1

l=0 rlp̃
l and r ′ = ∑m−1

l=0 rl
˜̃pl �G 2.

This comparison emphasizes the difference between our approach and previous
approaches: our expression (8) of the generalized Pauli operators is global and non-local,
although they can be decomposed as products of local operators. It also shows that the field
theoretical trace is replaced in our approach by another non-singular bilinear form, the rest
after division by p.

Although it is out of the scope of the present paper, it would be interesting to understand
the relation between our results in even prime power dimensions and the results presented in
[2, 16].

4.3. Other dimensions

It is still an open question to know whether maximal sets of mutually unbiased bases exist in
arbitrary dimensions. For instance, in dimension 6 which is the smallest dimension that is not
a power of a prime, nobody knows whether or not such a maximal set exists [6, 7]. It is not
possible to apply our treatment in this case because no finite field with six elements exists. We
could try to repeat the procedure with operations that do not form a field; for instance we could
try to find a distributive ring with six elements. Such a ring obeys the same definition as a
field (the definition that was given at the beginning of the paper), except that the multiplication
need not be invertible—dividers of zero different from zero are allowed. One can show that
there is only one distributive ring with six elements, that corresponds to the usual operations
(multiplication and addition modulo 6). If we study the structure of the N2 = 36 Heisenberg–
Weyl unitary transformations in that case, we find that there are more than N +1 = 7 subgroups
of six elements (5 + the identity). This is because, as a consequence of the non-invertibility of
the multiplication modulo 6 (3 and 2 divide zero), certain operators present degeneracies and
belong simultaneously to different subgroups (a treatment of similar type is given in detail in
[20] for the case N = 4 ). The bases that diagonalize these operators are not mutually unbiased
in general and the construction that was successfully applied in prime power dimensions does
not provide a maximal set of mutually unbiased bases (actually expression (29) allows us to
derive collections of at most three mutually unbiased bases). Therefore the question of the
existence of seven mutually unbiased bases in a six-dimensional Hilbert space is still open,
and our approach unfortunately does not contribute to the elucidation of that problem.

4.4. Conclusions

As we already mentioned, there is a one-to-one correspondence between (generalized) Bell
states and (generalized) Pauli operators [20] (see also [35] for a different approach based
on additive and multiplicative characters of the Galois field). It can also be proven [19,
20] that the Bell states are invariant when we pass from one of the mutually unbiased
bases to another one, an important result in the theory of cloning machines that was only
conjectured until now [14]. Actually, the present results were largely inspired by results that
we obtained in the framework of quantum cryptography [9] where the interest of mutually
unbias was recognized several years ago, with regard to encryption [21–23] and cloning as well
[9, 14, 24].

It is worth noting that, besides quantum cryptography and quantum cloning, the Bell
states also find many applications in quantum teleportation and dense coding. For instance,
the connections between mutually unbiased bases, complete orthogonal families of unitary
matrices and teleportation, have already been emphasized in the past [25, 26]. There



5282 T Durt

also exists an impressive literature about the interrelation between finite fields and the
discrete Wigner representation [28–31]. It is worth noting that if we perform a tomographic
development of the density matrix in the basis of the V operators, we obtain [20] the identity
ρ = (1/N)

∑
k,l V

k
l Tr · ((

V k
l

)+ · ρ
)
.

It is very instructive to compare the amplitudes of the decomposition of a density matrix
into the V basis with the Wigner function:

Tr · (
V k

l

)+
ρ = Tr · (

V k
l

)+
N−1∑
i,j=0

ρi⊕j,i

∣∣e0
i⊕j

〉〈
e0
i

∣∣

=
N−1∑
i,j=0

ρi⊕j,iγ
�(i⊕l)�kδl,j = γ �l�k

N−1∑
j=0

ρj⊕l,j γ
�j�k.

The Wigner function can be written [27] in terms of the conjugate continuous variables
q and p as W(q, p) = C · ∫

d3r ρ(q − r, q + r)e2ipr/h = C ′ · ∫
d3r ′ρ(r ′, 2 · q − r ′)e−i2pr ′/h,

where C is a normalization constant, while i is the square root of −1. The analogy of both
expressions is striking and, as we can see, the tomography of a quantum state that we realize
in the Pauli group approach provides a discrete counterpart of the Wigner representation. In
general the coefficients Tr · ((

V k
l

)+ · ρ
)

are complex, which does not meet the requirements
of a properly discretized Wigner function, but a properly discretized Wigner function can be
obtained by taking well-chosen linear combinations of the V operators. These combinations
are in one-to-one correspondence with the solution of the mean King problem given in [19].
It is out of the scope of the present paper but it would be interesting to study the connection
with other proposals for discrete phase-space representation [29–31]. One should note that as
the V operators are diagonal in the N + 1 mutually unbiased bases, full tomography can be
obtained by performing N +1 von Neumann measurements, as was already shown by Ivanovic
in prime dimensions and Wootters and Fields in prime power dimensions.

Finally, the properties of Bell states are also directly related to the error operators
[31–33], and it would be worth investigating to what extent our formalism contributes to
a simplification of the theory of error correcting codes, in prime power dimensions.

To conclude, we note that, despite the fact that the problem (and its solutions) seems to
be regularly rediscovered by different generations of physicists, which means also a lack of
time and energy, our results about the mean King problem [19] confirm that it is important to
explore alternative approaches in the treatment of the question of mutually unbiased bases.

We hope that the present paper contributes to a deeper understanding of the old problem
of mutually unbiased bases.
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